Finite Element Study of Implant Subsidence and Medial Tilt in Agility Ankle Replacement
نویسندگان
چکیده
BACKGROUND Clinical studies indicate that in total ankle arthroplasty, postoperative implant subsidence and medial tilt become two significant concerns of the ankle replacement system, and which are associated with the contact between the bones and the talar component. Up to now, little attention has focused on the contact between the bones and the talar component. MATERIAL AND METHODS In order to address implant subsidence and medial tilt, one three-dimensional finite element model of contact between the bone and the talar components was built with the material properties of the cancellous bone interpolated from the experimental data, which represents variation of material properties through the cancellous bones. The finite element model was used to study the following: variation of the Young's modulus of the bones, stiffness of the talar component, loading direction, and loading magnitude with the implant subsidence. RESULTS The computational results reveal that a variety of Young's modulus of the cancellous bones causes the medial tilting of the talar component and that big plastic strains are associated with tilting. The implant subsidence increases from 0.169 mm to 0.269 mm when the loading changes from 272 kg to 408 kg. However, to the contrary, the implant subsidence decreases from 0.2676 mm to 0.1783 mm when Young's modulus of the bones increases 50%. However, the implant subsidence shows little change with a different Young's modulus of the talar component from 88 GPa to 132 GPa. CONCLUSIONS Our study indicates that a variety of different Young's modulus of the cancellous bones cause the medial tilting of the talar component. To solve subsidence and tilting, both the contact area and the variation of material properties should be taken into account.
منابع مشابه
Malleolar fracture after total ankle arthroplasty: a comparison of two designs.
There has been a resurgence in the treatment of end-stage tibiotalar arthritis with prosthetic replacement. This procedure has highlighted numerous complications including malleolar fracture. We wanted to determine the clinical relevance of malleolar fracture with the two most commonly used implants in the United States. We retrospectively compared the first 20 STAR with the first 25 Agility to...
متن کاملDevelopment and experimental validation of a finite element model of total ankle replacement.
Total ankle replacement remains a less satisfactory solution compared to other joint replacements. The goal of this study was to develop and validate a finite element model of total ankle replacement, for future testing of hypotheses related to clinical issues. To validate the finite element model, an experimental setup was specifically developed and applied on 8 cadaveric tibias. A non-cemente...
متن کاملA boundary element/finite difference analysis of subsidence phenomenon due to underground structures
Analysis of the stresses, displacements, and horizontal strains of the ground subsidence due to underground excavation in rocks can be accomplished by means of a hybridized higher order indirect boundary element/finite difference (BE/FD) formulation. A semi-infinite displacement discontinuity field is discretized (numerically) using the cubic displacement discontinuity elements (i.e. each highe...
متن کاملThe Influence of Partial Knee Replacement Designs on Tensile Strain at Implant-Bone Interface
Partial knee replacement (PKR) results in fast recovery and good knee mechanics and is ideal to treat medial knee osteoarthritis. Cementless PKR depends on bone growing into the implant surface for long-term fixation. Implant loosening may occur due to high tensile strain resulted from large mechanical loads during rehab exercises. The purpose of this study is to investigate whether external fi...
متن کاملTotal ankle replacement design and positioning affect implant-bone micromotion and bone strains
Implant loosening - commonly linked with elevated initial micromotion - is the primary indication for total ankle replacement (TAR) revision. Finite element modelling has not been used to assess micromotion of TAR implants; additionally, the biomechanical consequences of TAR malpositioning - previously linked with higher failure rates - remain unexplored. The aim of this study was to estimate i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 24 شماره
صفحات -
تاریخ انتشار 2018